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The Lie group approach developed by Oberlack (1997) is used to derive new scaling
laws for high-Reynolds-number turbulent pipe flows. The scaling laws, or, in the
methodology of Lie groups, the invariant solutions, are based on the mean and
fluctuation momentum equations. For their derivation no assumptions other than
similarity of the Navier–Stokes equations have been introduced where the Reynolds
decomposition into the mean and fluctuation quantities has been implemented. The
set of solutions for the axial mean velocity includes a logarithmic scaling law, which
is distinct from the usual law of the wall, and an algebraic scaling law. Furthermore,
an algebraic scaling law for the azimuthal mean velocity is obtained. In all scaling
laws the origin of the independent coordinate is located on the pipe axis, which is
in contrast to the usual wall-based scaling laws. The present scaling laws show good
agreement with both experimental and DNS data. As observed in experiments, it is
shown that the axial mean velocity normalized with the mean bulk velocity ūm has
a fixed point where the mean velocity equals the bulk velocity independent of the
Reynolds number. An approximate location for the fixed point on the pipe radius
is also given. All invariant solutions are consistent with all higher-order correlation
equations. A large-Reynolds-number asymptotic expansion of the Navier–Stokes
equations on the curved wall has been utilized to show that the near-wall scaling laws
for flat surfaces also apply to the near-wall regions of the turbulent pipe flow.

1. Introduction
Many researchers have investigated turbulent pipe flows in detail over the last

hundred years, including flows with Reynolds numbers of up to Rem = 3.5 × 107

(for references see Zagarola 1996). However, little agreement has been accomplished
concerning the analytic form of the mean profile in the centre of the flow. Almost all
proposed functional forms of the mean flow may be written in the usual defect-law
scaling

ūc − ū
uτ

= f
( y
R

)
, (1.1)

first introduced by Stanton & Pannel (1914), where ū, ūc, uτ, R and y are, respectively,
the mean velocity, the centreline velocity, the friction velocity, the pipe radius and the
distance from the wall. Based on empirical arguments, different functions have been
proposed for f (see Schlichting 1979). One of the earliest attempts to describe the
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mean flow in the centre of a turbulent pipe flow was made by Darcy (1858):

ūc − ū
uτ

= 5.08
(

1− y

R

)3/2

. (1.2)

It will be shown later that Darcy’s law is consistent with the results of the present
investigation. Von Kármán (1930) developed one of the many different scaling laws
for the mean flow in a pipe based on the mixing-length model introduced by Prandtl
(1925).

A related flow problem which exhibits additional interesting flow features is that of
the turbulent flow in a pipe rotating about its axis. One of the earliest experimental
investigations on this problem was conducted by Levy (1929). He found that the
friction coefficient is reduced as the rotation rate was increased. The first detailed
measurements of the mean velocity profiles were made by Murakami & Kikuyama
(1980) and Kikuyama et al. (1983). They reported significant changes in the turbulent
characteristics of the rotating pipe flow, including relaminarization. The azimuthal
velocity fitted an algebraic scaling law with an exponent of approximately 2. Almost
no dependence of the exponent on the axial and azimuthal Reynolds number was
found when the velocity was normalized with the wall friction velocity. This has been
confirmed in recent measurements by Reich (1988). The algebraic azimuthal mean
velocity profile is in sharp contrast to the laminar flow in a rotating pipe, where solid-
body rotation occurs (Kikuyama et al. 1983; Reich 1988). Recently DNS calculations
of a rotating pipe flow by Orlandi & Fatica (1997) and DNS and LES calculations by
Eggels, Boersma & Nieuwstadt (1996) have been reported. The calculations support
the findings of the experiments. Orlandi & Fatica (1997) did detailed investigations
on coherent structures. In the rotating pipe flow, elongated streamwise structures near
the pipe axis are found.

To mathematically describe the rotating pipe flow, modelling approaches have
been introduced. The most simple approaches have been based on the mixing-length
model introduced by Kikuyama et al. (1983) and Reich (1988). However, in both
investigations the algebraic scaling law for the azimuthal velocity was an input to
the model and not a result. Only the deformation of the axial mean velocity due
to the rotation was calculated. Hirai, Takagi & Matsumoto (1988) have tested three
different models for the problem of a rotating pipe flow: (i) the classical k–ε model
by Jones & Launder (1973), (ii) a modified k–ε model which accounts for Richardson
number effects by Launder, Priddin & Sharma (1977) and (iii) the second-moment
closure model of Launder, Reece & Rodi (1975). The results from the standard k–ε
model were unaffected by the rotation. The modified k–ε model accounted for system
rotation but was not able to capture any of the correct physical trends for the mean
flow found in experiments. Only the second-moment closure model could qualitatively
describe both mean flow profiles.

Another phenomenon of a high-Reynolds-number turbulent pipe flow, first reported
by Preston (1950), is a fixed point in the mean axial velocity normalized with the bulk
velocity. The point is independent of Reynolds number and all mean velocity profiles
collapse at r/R = 0.75, where r is the radial coordinate. A detailed experimental
verification of this mean flow behaviour over a wide range of Reynolds numbers has
been conducted by Zagarola et al. (1996). A phenomenon similar to the fixed point
in a non-rotating pipe flow has been observed in a rotating pipe flow by Reich (1988)
when the rotation rate is varied. An explanation for both phenomena will be given
employing the new scaling law derived herein.

To give a mathematical theory of the observed phenomena of a non-rotating and
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a rotating pipe flow based on first principles rather than on modelling, the approach
developed by Oberlack (1997) will be adopted. Therein, a method was developed to
obtain scaling laws in plane parallel turbulent shear flows from the Navier–Stokes
equations where the Reynolds decomposition into mean and fluctuating quantities has
been employed. The approach is based on the classical Lie group analysis to ensure
that all self-similar, or, in the methodology of Lie groups, all invariant solutions, are
obtained. The results therein cover the usual law of the wall as well as introducing
several new scaling laws. These include an algebraic and an exponential scaling law.
All of the scaling laws were verified using both experimental and DNS data. In the
following it will be shown that the application of the Lie group approach to cylindrical
turbulent flows provides explanations for many of the pipe flow phenomena described
above and new pipe flow scaling laws will be derived.

A first attempt using Lie group methods in turbulence has been undertaken by
Ünal (1994) and Ibragimov & Ünal (1994) analysing Kolmogorov’s inertial-subrange
theory. Therein it is demonstrated by investigating the symmetries of the Navier–
Stokes equations that the dissipation rate may be an invariant if a certain linear
combination of two scaling symmetries is chosen.

Lie group analysis, also called symmetry analysis, was developed by Sophius Lie
to find point transformations which map a given differential equation to itself. Lie
realized that his method unifies almost all known exact integration techniques for
both ordinary and partial differential equations. Furthermore, it can be applied to
arbitrary nonlinear equations where no general integration methods are known. Group
analysis is the only rigorous mathematical method to find all symmetries of a given
differential equation and no ad hoc assumptions or a priori knowledge of the equation
under investigation is needed. Once the symmetries are known they can be utilized
in a variety of applications. The most useful application for ordinary differential
equations is the reduction of order or, depending on the structure of the symmetries,
the complete integration of the equation. The most widespread application for partial
differential equations is the derivation of self-similar solutions, also called symmetry
reduction. Another usage is the derivation of new solutions from old ones. With
group analysis it can also be examined whether a nonlinear differential equation is
linearizable or whether a linear differential equation can be transformed to a linear
constant-coefficient equation.

If group methods are applied to the Navier–Stokes equations (where no averaging
has been inferred) one obtains all the axiomatic transformation properties of classical
mechanics such as scaling invariance, frame invariance with respect to finite rotation,
frame invariance with respect to translation in space and time, Galilean invariance and
its generalization and two-dimensional material frame indifference. Almost all known
exact solutions of the Navier–Stokes equations emerge from the latter symmetries.

Classical approaches such as dimensional analysis or ad hoc methods usually cap-
ture only a few symmetries and normally strongly depend on intuition. Furthermore,
it may be difficult to prove with the classical methods whether all self-similar solutions
have been found, but this is guaranteed with Lie group analysis. The theory is fully
algorithmic and no a priori knowledge of the equation is needed. Modern approaches
to group theory applied to differential equations are presented in Hill (1992) or more
for a more thorough discussion of the topic in Bluman & Kumei (1989), Ibragimov
(1994, 1995) and Olver (1986).

Scaling laws are not isolated features of certain turbulent flows but mirror the
symmetries of the Navier–Stokes equations. To understand the mechanisms and the
underlying physics of turbulence, symmetries are very important features in particular
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in view of improved turbulence models. Many of the common turbulence models,
and in particular the most widespread k–ε model, violate symmetry properties of
the Navier–Stokes equations. The model study of the rotating pipe flow problem
as accomplished by Hirai et al. (1988) illuminates the inability of the k–ε model to
properly emulate turbulent flows with strong streamline curvature. In the rotating
pipe problem the k–ε model yields solid-body rotation which is not supported by
experimental and DNS data.

The paper is organized as follows. In § 2 the governing equations are derived and a
brief introduction to the theory developed in Oberlack (1997) is given. In § 3 the Lie
group analysis of circular turbulent flows is presented and self-similar mean velocity
profiles are calculated. In § 4 the self-similar solutions are compared with experimental
and DNS data. In §§ 3 and 4 only outer flow scaling laws are derived and the classical
near-wall scaling laws are not captured. Hence, in § 5 a regular asymptotic expansion
of the Navier–Stokes equations on the curved wall will be utilized to show that near-
wall scaling laws can be obtained from flat-surface scaling laws in the limit of large
Reynolds numbers. Section 6 deals with the fixed point of the mean axial velocity
normalized with the bulk velocity in a non-rotating and rotating pipe.

All the present results have been aided by symmgrp.max, a Lie group software
package for MACSYMA (1993) written by Champagne, Hereman & Winternitz
(1991).

2. Governing equations
The basis for the following analysis is the incompressible Navier–Stokes equations

in cylinder coordinates at a constantly rotating frame of reference about the z-axis:
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and the continuity equation

∂Uz
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∂

∂r
(rUr) +

1

r

∂Uφ

∂φ
= 0, (2.2)

where Uz , Ur , Uφ, P , ν and Ωz = Ω, are, respectively, the instantaneous velocity vector
in the axial, radial and azimuthal directions, the pressure, the kinematic viscosity, and
the angular rotation rate of the frame of reference. In equation (2.1), and subsequently,
the pressure has been normalized with the density.
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Due to the rotational symmetry in a fully developed straight pipe flow, all mean
quantities depend only on the radial coordinate r. The only mean velocities that need
to be considered are in the axial and the azimuthal directions. The standard Reynolds
decomposition for the pressure and the velocities in cylinder coordinates is P = p̄+p,
Uz = ūz + uz , Uφ = ūφ + uφ, and Ur = ūr + ur , where the overbar denotes an ensemble
average and the lower-case letters refer to the fluctuating quantities.

The mean pressure consists of an axial part coming from a constant pressure
gradient along the pipe axis and a radial part due to the turbulent normal stresses.
Hence, in the following p̄ will be replaced with −Kz + p̄ where p̄ depends only on
r and K refers to the constant pressure gradient. In case of a rotating pipe flow the
normal stresses also contain centrifugal forces.

The present analysis is restricted to stationary parallel mean shear flows. Hence the
equations

∂ūz

∂z
=
∂ūz

∂φ
=
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∂t
= ūr = 0 (2.3)

need to be employed in the subsequent analysis.
In the present investigation only the mean velocities are analysed and hence there

is no need to derive a separate equation for the mean and the fluctuation quantities.
Mean convective terms are not present in the flow and for parallel flows there is a
one-to-one relationship between the Reynolds stresses, the pressure gradient, and the
viscous stresses. The Reynolds decomposition can be directly used in the equations
(2.1) and (2.2) to obtain the somewhat unusual form of the Navier–Stokes equations
in cylindrical coordinates:
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The above equations are written in the form Ni = 0 for later convenience in the Lie
group analysis.

The continuity equation (2.2) stays unchanged with the instantaneous velocities
interchanged with the fluctuation velocities,
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+

1

r

∂
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(rur) +

1

r

∂uφ

∂φ
= 0. (2.5)

The system (2.4) and (2.5) forms a set of unclosed equations in the sense that it
contains more dependent variables than equations. This usually requires the introduc-
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tion of higher-order statistical moment equations to find turbulent scaling laws. In
the present investigation this is not necessary. In Oberlack (1997) it was shown that
in order to obtain turbulent scaling laws for the mean flow, only the equations for
the mean velocity and the second-order velocity product equations (VPE) have to be
considered. In the following the VPE will refer to the usual second-moment equations,
where the averaging process has been omitted. As a consequence, all scaling laws are
consistent with the Reynolds-stress transport equations. The converse may not be
true, since the averaging process is not reversible. In appendix B in Oberlack (1997)
it was shown that the self-similar mean velocities derived from the VPE approach are
also obtainable by analysing the two-point correlation equations in physical space.

Since the cylindrical coordinate system is orthogonal, the VPE may be written as
the dyadic product

Niuj +Njui = 0, (2.6)

where u1 = uz , u2 = ur , and u3 = uφ.
The present investigation has two advantages over an analysis that considers the

mean momentum and the Reynolds stress equations. First, in the usual second-
moment equations a large number of unclosed terms need to be considered. In
principle all infinite higher-order correlations need to be considered to show that the
scaling laws obtained below are consistent with all higher-order-correlation equations.
Lie group analysis with today’s computer algebra systems can only be applied to finite
and fairly small systems. Secondly, in appendix A of Oberlack (1997) it was proven
that no higher than the second-order-moment equations (2.6) were needed to have
the resulting mean velocity scaling laws consistent with all higher-order-moment
equations. It will be shown later that this also applies to the present investigation.

3. Symmetry analysis for the turbulent pipe flow
In the following, the Lie group approach developed in Oberlack (1997) will be

applied to non-rotating and rotating pipe flow to obtain all self-similar or also called
invariant solutions. In the present case the analysis includes the variables

y = {z, r, φ, t, ν, uz, ur, uφ, p, ūz , ūφ, p̄}. (3.1)

Note that (3.1) contains ν as an additional variable. This is a classical idea in Lie group
analysis (see e.g. Bluman & Kumei 1989) and is called equivalence transformation. It
was first applied to Navier–Stokes equations in its usual form in Ünal (1994).

The purpose of the symmetry analysis is to find those transformations

y∗ = {z∗, r∗, φ∗, t∗, ν∗, u∗z , u∗r , u∗φ, p∗, ū∗z , ū∗φ, p̄∗} = f(y; ε) (3.2)

which leave the equations (2.4), (2.5), and (2.6) unchanged when written in the new
variables y∗:

C = C∗, (3.3a)

Ni =N∗
i , (3.3b)

(Niuj +Njui) = (Niuj +Njui)
∗. (3.3c)

The superscript ∗ of any quantity denotes its evaluation according to the transforma-
tion (3.2). The purpose of the symmetry analysis is to find the most general form of f
in (3.2) which solves the symmetry condition (3.3). A transformation f which solves
(3.3) is called a symmetry. If f is implemented into the right-hand side of (3.3) it
results in a large nonlinear overdetermined system of partial differential equations for
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the mapping function f. To find a general solution of this system would be extremely
difficult and may also not be desirable. The most general form of the transformation
f may be separated into two different sets: finite groups and continuous groups
of transformation. The Navier–Stokes equations for example admit finite groups of
transformations which are reflection symmetries of the form u∗ = −u, x∗ = −x.
However, to find self-similar or invariant solutions only the continuous groups of
transformations are useful which contain one or several continuous parameters as
indicated by ε in (3.2). The frame-invariance transformation x∗ = x+ a is an example
of a continuous transformation group of the Navier–Stokes equations.

The key to find the continuous transformations without any need to investigate the
intractably large nonlinear overdetermined system of partial differential equations for
f is an infinitesimal form of the transformation (3.2)

y∗ = y + ε
∂f

∂ε

∣∣∣∣
ε=0

+ O(ε2) (3.4)

first introduced by Lie.
It can be shown (see e.g. Bluman & Kumei 1989) that from the expansion (3.4)

only terms up to the order e need to be considered, i.e.

z∗ = z + εξz, r
∗ = r + εξr, φ

∗ = φ+ εξφ, t
∗ = t+ εξt, ν

∗ = ν + εξν ,

u∗z = uz + εηuz , u
∗
r = ur + εηur , u

∗
φ = uφ + εηuφ , p

∗ = p+ εηp,

ū∗z = ūz + εηūz , ū
∗
φ = ūφ + εηūφ , p̄

∗ = p̄+ εηp̄,

 (3.5)

where, instead of the mapping f, only the infinitesimal generators ξ = ξ(y) and
η = η(y) need to be determined. The subscripts of the elements of ξ and η indicate
the variables they refer to and should not to be mistaken as derivatives. Given the
infinitesimal generators ξ and η, the global transformation f is uniquely determined
by Lie’s differential equations (see e.g. Ibragimov 1994, 1995). The major advantage
of the infinitesimal approach is that the equations for the infinitesimal generators are
linear and, generally, easy to solve.

To find the infinitesimals ξ and η, the infinitesimal form of transformation (3.5)
will be introduced into the equations (3.3). As an example consider the symmetry
condition for the continuity equation C = C∗ which changes to C = C+ εXC+O(ε2).
The term C cancels on both sides. As has been mentioned above only the order-ε
terms need to be considered and hence the leading-order equation is given by XC = 0
where X is defined by (3.6) below.

This can be generalized and the symmetries of the equations (2.4) and (2.5) can be
calculated by applying the following operator:

X = ξz
∂
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∂
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+ ηp

∂
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+ ηūz

∂

∂ūz
+ ηūφ

∂

∂ūφ
+ ηp̄

∂

∂p̄
(3.6)

and its prolongation (see e.g. Ibragimov 1994, 1995) to the equations (2.4) and (2.5)
which yields

XC = 0 and XNi = 0 (3.7)

under consideration of (2.3).
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As a result, a set of more than one hundred linear overdetermined partial differ-
ential equations for ξ and η (not shown here) are obtained. Its solution defines the
infinitesimal generators ξ and η given in equation (A 1) of the Appendix.

There are still unknown functions in the infinitesimal generators. In particular, the
appearance of g1 and g2 in (A 1) refers to the fact that the mean velocity profiles for
ūz and ūφ cannot be determined uniquely. In order to do so the symmetries have to
be consistent with the equations (2.6). According to the theory in Oberlack (1997),
the operator (3.6) and its prolongation plus the already calculated generators (A 1)
will be applied to (2.6) which yields

X(Niuj +Njui) = 0. (3.8)

As a result, the reduced set of generators given by equation (A 2) is obtained. The
generators have a similar form to those obtained in Oberlack (1997). In particular,
the generators of the fluctuation velocities uz , ur , and uφ are such that the proof in
appendix A in Oberlack (1997) also applies to the present problem. As a result, no
higher-order VPEs need to be considered. The invariance of the equations (2.3)–(2.6)
is sufficient for the scaling laws to be consistent with all higher-order correlation
equations.

Comparing the resulting infinitesimal generators in some detail with those obtained
for plane parallel turbulent shear flows, two major differences appear. First, for the
plane case, the coordinate x2, which is normal to the mean flow ū1, can have an
arbitrary origin. As a result, ū1 is frame invariant in x2 and this results in an arbitrary
additive constant in the infinitesimal generator for ξx2

. In the axisymmetric case a
corresponding constant is missing, since no shift in the r-direction can be introduced.
As will be shown below, this fact restricts the form of the possible invariant solutions.
An invariant mean velocity that has an exponential form does not exist for the
axisymmetric case.

The second major difference arises because system rotation has different effects on
both flows. For the plane case, system rotation imposes a time scale on the flow, which
is symmetry breaking, and only the linear mean velocity is an invariant solution. For
the present case, system rotation about the z-axis is not symmetry breaking. Additional
solid-body rotation terms appear in the subsequent scaling laws for the azimuthal
mean velocity. However, the fundamental form of the scaling laws is unaltered.

In the following it will be pointed out how the infinitesimals (A 2) are used to
obtain self-similar solutions. In principle the infinitesimal generators (A 2) may be
used to compute the global transformations (3.2) (see e.g. Ibragimov 1994, 1995)
which in turn may be utilized to derive self-similar solutions. This is not necessary
since the similarity variables may be obtained from the infinitesimals directly. It is well
known that the defining property of self-similar solutions of a differential equation
are their representation by a lower number of independent variables. A less well
known but synonymous description of self-similar solutions is by their unaffectedness
or invariance due to symmetry transformations. The latter definition will be employed
to derive self-similar solutions.

Suppose the self-similar solutions to be derived herein are given by

z = Θ(x), (3.9)

where z corresponds to the vector of all dependent variables and x to the vector of
all independent variables including ν. In implicit form (3.9) may be written as

F (x, z) = z −Θ(x) = 0. (3.10)
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Self-similarity may be formulated through two necessary and sufficient conditions:
(i) F = 0 is a solutions of the equations (2.3)–(2.6),

(ii) F is invariant with respect to the symmetry groups admitted by the equations
(2.3)–(2.6).
In the methodology of Lie group analysis (ii) may be written as

XF = X [z −Θ(x)]|z=Θ(x) = 0. (3.11)

X is defined by (3.6) where the infinitesimals are taken from (A 2) in the Appendix.
Carrying out the differentiations of operator X, condition (3.11) may be rewritten as

ξi(x,Θ(x))
∂Θ

∂xi
= η(x,Θ(x)). (3.12)

Equation (3.12) may be solved employing the method of characteristics which leads
to the set of equations

dz

ξz
=

dr

ξr
=

dφ

ξφ
=

dt

ξt
=

dν

ξν
=

duz
ηuz

=
dur
ηur

=
duφ
ηuφ

=
dūz
ηūz

=
dūφ
ηūφ

=
dp

ηp
=

dp̄

ηp̄
, (3.13)

called the invariant surface condition. As in the classical method of characteristics
the constants of integration are to be taken as the new variables. From (3.13) it
is apparent that the number of integration constants is one less than the original
number of variables and hence a similarity reduction will be achieved.

In the literature it has been argued correctly that in principle all the self-similar
solutions or scaling laws may depend on viscosity or Reynolds number. In fact, this
can also be taken from the infinitesimals in Appendix which all depend ν. However,
the exact functional dependence on the Reynolds number cannot be determined from
the present form of the theory since the group parameters arbitrarily depend on
viscosity. A recent proposal for the functional dependence of near-wall scaling laws
on Reynolds number has been made in Barenblatt (1993). On the other side, in
an innumerable number of experiments it has been observed that mean quantities
become independent of Reynolds number as the Reynolds number tends to infinity.
Unfortunately, a solid theoretical foundation for this behaviour has not been given
yet. In view of the present self-similarity analysis of high-Reynolds-number flows the
large-Reynolds-number limit may be translated to the following weak restriction on
the group parameters:

lim
ν→0

k(ν) = finite, (3.14)

where k(ν) is a representative of all group parameters in (A 2). The latter limit does
not restrict the number or the functional form of the self-similar solutions to be
computed later. The only restriction is that the constants appearing in the self-similar
solutions are to be independent of viscosity. An explicit functional Reynolds number
dependence in the scaling laws will be investigated in the future, since the functional
dependence is beyond the scope of the present analysis.

Recall that the present purpose is to investigate scaling laws for the mean flow.
Hence, the following results are restricted to the reduced invariant surface condition
for ūz and ūφ taken from (3.13)

dr

a1r
=

dūz
[a1 − a2]ūz + b1

,
dr

a1r
=

dūφ
[a1 − a2]ūφ − a2rΩ

, (3.15)
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where the infinitesimal generators in (A 2) have implemented. Each of the group
parameters a1, a2, b1 corresponds to a certain physical meaning: a1 and a2 conform to
two scaling or dilatation groups referring to the fact that in classical mechanics space
and time can be arbitrarily stretched; b1 constitutes the classical Galilean group of
transformation. The scaling laws emerging from the conditions (3.15) can be readily
integrated and three cases are to be distinguished each one referring to a broken
symmetry.

3.1. Algebraic axial and azimuthal mean velocity profile: a1 6= a2 6= 0 and b1 6= 0

This is the most general case and no symmetry breaking scale is imposed on the flow.
Equation (3.15) can be integrated for the axial and azimuthal mean velocity:

ūz = − b1

a1 − a2

+ C1r
1−a2/a1 (3.16)

and

ūφ = C2r
1−a2/a1 − Ωr, (3.17)

respectively, where C1 and C2 are constants. In § 4, experimental and DNS data are
used to verify the equations (3.16) and (3.17).

A sub-case of the present parameter combination is that of an external time scale
acting on the flow, resulting in a2 = 0. The scaling laws for the mean flow would
result in a cone-like axial profile and solid-body rotation for the azimuthal mean
velocity. So far, such conditions have not been found in a real physical problem.

3.2. Logarithmic axial mean velocity profile: a1 = a2 6= 0 and b1 6= 0

This combination of parameters applies if an external velocity scale acts on the flow.
For this case the infinitesimal generators for the fluctuation velocities in the generators
(A 2) are zero and hence uz , ur , and uφ are invariants. As in the case of a plane parallel
shear flow, this results in a logarithmic mean velocity profile

ūz =
b1

a1

ln(r) + C3. (3.18)

It is important to note that this does not correspond to the classical law of the wall,
where the singularity of the logarithm is at the wall; here the singularity appears on
the pipe axis (see also § 4). Subsequently is will be referred to as ‘circular log-law’. It
appears that (3.18) applies in some section of the radius for rapidly rotating pipes,
in which the wall velocity is the symmetry-breaking velocity scale. The corresponding
azimuthal velocity is given by

ūφ = −Ωr + C4. (3.19)

Of course, (3.19) cannot be valid at the centreline r = 0 because of its singular form
and it follows that C4 = 0. In general both C3 and C4 are constants.

3.3. Hyperbolic mean velocity profiles: a2 = 2a1 6= 0 and b1 6= 0

For this parameter combination the infinitesimal generator for ν in (A 2) is zero and
hence viscosity is an invariant. The axial mean velocity can be computed to be

ūz =
b1

a1

+
C5

r
(3.20)

and the corresponding azimuthal velocity is the potential vortex is given by

ūφ =
C6

r
− Ωr. (3.21)
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This is the only case that is also an invariant solution for a laminar flow because
in laminar flows viscosity is always an invariant.

For the subsequent comparison with experimental and DNS data, the system
rotation does not need to be considered. In the case of a pipe flow it is fully
equivalent if the pipe is put in a rotating coordinate system with a non-moving wall
or if the pipe walls are moving in a inertial frame. Owing to the frame rotation,
only solid-body rotation terms appear in the scaling laws for the azimuthal velocity.
However, it does not alter the form of the scaling law in the inertial frame as has
been pointed out above. Without loss of generality, the subsequent investigation is
restricted to an inertial frame with Ω = 0.

4. Pipe flow scaling laws in experimental and numerical data
It is important to note that the invariant solutions (3.16)–(3.21) admitted by the

equations (2.3)–(2.6) are self-similar solutions. They are not solutions of a boundary
value problem for the quantities ūz and ūφ. Hence, it is not known whether any
of the solutions refer to real turbulent flows or whether they can be observed in
experimental or DNS data. There is no rigorous proof that turbulence tends towards
self-similar solutions when initial and boundary conditions permit this, even though
this has been observed in innumerable experimental and DNS data sets. However,
Lie group analysis gives strong hints as to which flows the solutions are applicable.
This will be explained in the present section and experimental and DNS data will be
presented to give an empirical verification of the scaling laws.

The hyperbolic mean velocity profile will not be investigated here, since it is known
that straight turbulent vortices in unbounded domains tend to the potential vortex
and relaminarize. Donaldson & Bilanin (1975) gave an experimental verification of
this, by investigating high-Reynolds-number trailing-edge aircraft vortices. For all the
invariant solutions computed here, this is the only case where the mean velocity is an
invariant solution for both laminar and turbulent flows. So far, only the axial mean
velocity profile (3.20) could not be assigned to any specific turbulent flow.

4.1. Non-rotating pipe flow

From the invariant solution (3.16), the proposed new defect law for the pipe flow is
given by

ūc − ūz
uτ

= χ
( r
R

)ψ
, (4.1)

where χ and ψ are constants. In contrast to the usual defect law for the pipe flow,
the coordinate r has its origin at the pipe centre rather than at the pipe wall.

It is important that the functional form of (4.1) is compared with experimental
pipe flow data in log-log scaling since linear plots would mask the differences. In
figure 1 the data of Zagarola (1996) for high-Reynolds-number turbulent pipe flows
are plotted in the form suggested by equation (4.1). (Note that the individual curves
are shifted vertically.) The data range about three decades in Reynolds number

Rem = ūmD/ν, where the bulk velocity ūm is defined by ūm = 2
∫ R

0
ū(r)rdr/R2 and D is

the pipe diameter.
It is apparent from figure 1 that in the range 0.1 6 r/R 6 0.8 all data vary linearly.

The deviation for r/R 6 0.1 may be due to the large amplification of errors when
plotting the difference between ūc and ūz in log coordinates. The data of Zagarola
(1996) suggest that the constants in (4.1) are χ = 7.5 and ψ = 1.77.
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Figure 1. Log-log plot of the axial mean velocity of high-Reynolds-number turbulent pipe flow
from Zagarola (1996) in defect law scaling (4.1): ◦, Rem = 3.5 × 107; �, Rem = 1.4 × 107; �,
Rem = 4.4× 106; ×, Rem = 1.3× 106; +, Rem = 4.1× 105; 4, Rem = 1.5× 105; •, Rem = 4.2× 104;

——–, 7.5
(
r/R

)1.77
; – – –, 101.27.5

(
r/R

)1.77
. (Beginning with Rem = 1.4×107 each data set is shifted

upward by the factor 100.2.)

The invariant solution (3.16) may have Reynolds number dependence in the expo-
nent and in the coefficient; however this has been explicitly excluded by condition
(3.14). Zagarola’s data suggest that at least for the medium to high Reynolds num-
bers presented no such dependence exists. The low-Reynolds-number dependence is
beyond the scope of the theory in its present form.

4.2. Rotating pipe flow

In contrast to the laminar flow in a rotating pipe, where the azimuthal velocity closely
follows solid-body rotation (Reich 1988), in the turbulent flow case, an algebraic
scaling law (3.17) is apparent in many experimental and DNS data. This can be
rewritten as

ūφ

ūw
= ζ

( r
R

)ψ̂
, (4.2)

where ūw is the azimuthal velocity at the wall and ζ and ψ̂ are constants.
In figure 2 experimental data for the azimuthal mean velocity in rotating pipes at

moderate rotation numbers are presented. This indicates that for the outer part of
the pipe radius the data closely follow an algebraic scaling law, and the range of
validity depends on Reynolds number and rotation number N = ūw/ūm. The inner
region of the rotating pipe exhibits a deviation from the power law. This is due to
measurement errors and in particular to the effect of solid-body rotation that appears
near the pipe axis. This will be confirmed below using the DNS data of Orlandi &
Fatica (1997) in figure 4.

The data available in the literature indicate that the algebraic scaling law and its
exponent have neither a significant Reynolds number nor a rotation number depen-
dence. Only the extension towards the pipe axis is affected by these two parameters.
Experiments suggest ψ̂ ≈ 2 and ζ ≈ 1.

One can deduce from the two invariant solutions (3.16) and (3.17) that the exponent
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Figure 2. Log-log plot of the azimuthal mean velocity normalized with the wall velocity for rotating
pipes: ◦, Rem = 20 000, N = 0.5; �, Rem = 20 000, N = 1.0; �, Rem = 50 000, N = 0.5 (Reich 1988):
×, Rem = 50 000, N = 1.0 (Kikuyama et al. 1983).

ψ of the scaling law for the axial velocity in (4.1) is also a constant that has the
same value as ψ̂. The scaling law in equation (4.1) has to be extended to account for
rotation effects in the pre-factor χ, the reason being the following.

There is a fundamental difference in rotating a laminar and a turbulent pipe flow
along its axis. In a laminar pipe flow the two-dimensional material frame indifference
theorem applies (see e.g. Batchelor 1967). It reflects the fact that a flow is not
affected by constant system rotation if the dependent variables only depend on two
spatial coordinates and the rotation vector is aligned with the axis of independence.
A three-dimensional correspondence for the material indifference theorem does not
exist because the Coriolis terms cannot be absorbed within any of the other terms
in the Navier–Stokes equations. Since a turbulent flow is always three-dimensional
system rotation strongly affects turbulence with growing effectiveness if rotation rate
increases. Hence, rotation rate, or for the pipe flow the wall velocity, is an important
flow parameter. This leads to the reverse of the material indifference theorem which
holds in a weaker form: with increasing rotation rate a turbulent flow becomes more
and more two-dimensional and ultimately fully two-dimensional at infinite rotation
rate. This is also known as the Taylor–Proudman theorem.

Applied to the rotating pipe problem the scaling law is strongly affected by the
additional velocity scale ūw . Hence, a modified scaling law for axial mean velocity is
proposed:

ūc − ūz
uτ

= χ̂

(
ūw

uτ

)( r
R

)ψ̂
, (4.3)

where χ̂ is not a constant but rather a function of the velocity ratio.
In figure 3 experimental data of the axial and azimuthal mean velocity have been

plotted in log-log scaling for a moderate rotation number. The two curves are parallel
and straight for some part of the pipe radius as suggested by (4.2) and (4.3). No
functional form has been assigned to χ̂

(
ūw/uτ

)
from the present form of the Lie group

theory and there is also only a limited amount of data available in the literature.
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Figure 3. Log-log plot of the axial and azimuthal mean velocity of the experimental data of
Kikuyama et al. (1983) for Rem = 50 000 and N = 1.0 for rotating pipes: ◦, (ūc − ūz)/ūw : �, ūφ/ūw .
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Figure 4. Log-log plot of the axial and azimuthal mean velocity of the DNS data of Orlandi &
Fatica (1997) for Rem = 4900 and N = 2: ——–, (ūc − ūz)/ūw: – – –, ūφ/ūw .

Note that (4.2) and (4.3) only apply for moderate rotation number N. As the
rotation number increases, the rotating wall velocity ūw becomes the dominant velocity
scale and the axial velocity changes drastically. In figure 4 the DNS results of Orlandi
& Fatica (1997) are plotted for N = 2 in log-log scaling. The algebraic law for
the axial velocity is reduced significantly and it is only valid up to r/R ≈ 0.5. The
algebraic law for the azimuthal velocity is valid for 0.3 6 r/R 6 0.6. Below r/R ≈ 0.1
solid-body rotation is present as mentioned above.

It has already been pointed out that the circular log-law given by (3.18) does not
correspond to the usual law of the wall found by von Kármán (1930). The logarithmic
singularity is not on the pipe wall but rather on the pipe axis. For the derivation of
(3.18) it was assumed that the region of applicability is dominated by an external
velocity scale. It appears that the new log-region is valid when ūw dominates the
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Figure 5. Semi-log plot of the axial mean velocity of the DNS data of Orlandi & Fatica (1997) for
Rem = 4900 and N = 2: ——–, ūz/ūw from DNS: - - - -, ūz/ūw = − log

(
r/R

)
+ 0.354.

friction velocity uτ. The suggested scaling law is

ūz

ūw
= λ log

( r
R

)
+ ω. (4.4)

In figure 5 the axial mean velocity data of Orlandi & Fatica (1997) are now plotted
in semi-log scaling, corresponding to (4.4). A straight line matches about 30% of the
pipe radius in the range 0.5 6 r/R 6 0.8. The region of applicability of this new
log region is different from the logarithmic law of the wall which lies in the range
0.9 6 r/R 6 1.0. Also the coefficient λ in (4.4) is negative and approximately equal to
−1. The additive constant ω has been fitted to 0.354. Figure 5 plotted in linear scaling
(not shown here) exhibits two inflection points which correspond to the ‘edges’ of the
logarithmic scaling law.

5. Near-wall scaling laws
Though a new logarithmic law was found in the previous sections, the group

analysis in § 3 does not reveal the usual log region near the pipe wall. This is
somewhat surprising since it is one of the solutions found by Oberlack (1997) for
the case of plane parallel turbulent shear flows. Experimental data of Zagarola
& Smits, (1997) suggest that the log region may be valid in the region 0.9 6
r/R 6 1.0. This near-wall region on the pipe radius is where the pipe curvature
has the weakest influence on the flow and hence a regular expansion for large
pipe radius may be applicable. Subsequently it will be shown that the leading-
order terms in the near-wall region are equivalent to the equations for the flat
plate.

In order to do this, a new coordinate system

z = z, y = R − r, s = rφ, Uz = Uz, Uy = −Ur, Us = Uφ (5.1)

according to the sketch in figure 6 is introduced into the equations (2.1) and (2.2).
The coordinate s varies along the arc and the coordinate y is a wall-based coor-
dinate pointing towards the centre of the pipe. R is the pipe radius. To identify
the leading-order terms in the near-wall region the new coordinates (5.1) will be
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s z

r y

Figure 6. Sketch of the wall-based coordinate system as adopted for
the near-wall scaling laws.

non-dimensionalized by

uτ =

(
ν
∂ū

∂y

∣∣∣∣
y=0

)1/2

and l+ = ν/uτ, (5.2)

the friction velocity and the viscous length scale, respectively. Implementing (5.1) and
(5.2) into (2.1) and (2.2) yields

∂Uz

∂t
+Uz

∂Uz

∂z
+Uy

∂Uz

∂y
+Us

∂Uz

∂s
+

s

y − ReRUy

∂Uz

∂s
= −∂P

∂z
+
∂2Uz

∂z2

+
∂2Uz

∂y2
+
∂2Uz

∂s2
+

2s1/2

y − ReR
∂

∂s

(
s1/2

∂Uz

∂y

)
+

s

(y − ReR)2

∂

∂s

(
s
∂Uz

∂s

)
, (5.3a)

∂Uy

∂t
+ Uz

∂Uy

∂z
+Uy

∂Uy

∂y
+Us

∂Uy

∂s
+

1

y − ReR

(
s

2

∂U2
y

∂s
−U2

s

)
= −∂P

∂y
− s

y − ReR
∂P

∂s

+
∂2Uy

∂z2
+
∂2Uy

∂y2
+
∂2Uy

∂s2
+

1

y − ReR
[
2s1/2

∂

∂s

(
s1/2

∂Uy

∂y

)
− 2

∂Us

∂s

]
+

1

(y − ReR)2

(
s2
∂2Uy

∂s2
+ 2s

∂Uy

∂s
−Uy

)
, (5.3b)

∂Us

∂t
+ Uz

∂Us

∂z
+Uy

∂Us

∂y
+Us

∂Us

∂s
+

1

y − ReR
(
s
∂Us

∂s
+UsUy

)
= − ∂P

∂s
+
∂2Us

∂z2
+
∂2Us

∂y2
+
∂2Us

∂s2
+

1

y − ReR
[
2s1/2

∂

∂s

(
s1/2

∂Us

∂y

)
+ 2

∂Uy

∂s

]
+

1

(y − ReR)2

(
s2
∂2Us

∂s2
+ 2s

∂Us

∂s
−Us

)
, (5.3c)

and

∂Uz

∂z
+
∂Uy

∂y
+
∂Us

∂s
+

1

y − ReR
∂

∂s
(sUy) = 0 (5.4)

where any indices referring to the non-dimensional form of the equations have been
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omitted. In (5.3) and (5.4) the Reynolds number is defined as

ReR =
uτR

ν
, (5.5)

which can also be interpreted as a normalized pipe radius.
In the limit of an asymptotically large difference between the Reynolds number

ReR and the wall distance y, the leading-order terms of the equations (5.3) and (5.4)
are the Navier–Stokes equations in Cartesian coordinates. This is exactly the form
of the equations that has been investigated by Oberlack (1997). Compared with the
nomenclature therein the present independent variables z, y and s, respectively, refer
to the mean flow direction, the wall normal direction and the spanwise direction with
the corresponding velocities Uz , Uy and Us.

Transferring his results to the present problem of the near-wall scaling laws in
turbulent pipe flows by adopting the leading-order equations in (5.3) and (5.4), the
mean flow profiles can be obtained from the invariant surface condition

dy

c1y + c3

=
dūz

[c1 − c4]ūz + d1

. (5.6)

Depending on the choice of the group parameter c1, c3, c4 and d1, these equations
admits five distinct solutions which are a logarithmic, an algebraic, an exponential and
two, from a symmetry point of view, different linear mean velocity profiles. A detailed
discussion on the different solutions and an empirical verification investigating DNS
and experimental data has been given in Oberlack (1997).

The results presented therein also shed some light on a recent controversial discus-
sion in the literature on whether the so-called log region indeed matches a logarithmic
function or may instead follow an algebraic scaling law. Proposals towards this idea
have been made by Barenblatt (1993), Barenblatt & Chorin (1996), George (1996)
and George, Castillo & Knecht (1996).

From the difference y − ReR in the equations (5.3) and (5.4) it is apparent that
with increasing Reynolds number the validity region of the leading-order equations
expands. Zagarola & Smits, (1997) have shown that the logarithmic region extends
up to about y = 0.1R. Using this as an upper bound for y in the equations (5.3) and
(5.4) the difference y − ReR only scales with ReR . Written in wall coordinates, the
length of the log-region increases with Reynolds number, which is well known from
experiments in turbulent pipe flows. An example illustrating this has been depicted in
figure 7 in which the Reynolds number ReR varies between 1.1× 103 and 5.3× 105.

6. Fixed point analysis
As mentioned in the introduction, Preston (1950) first found a fixed point in the

mean velocity profile of a turbulent pipe flow when the mean velocity is normalized
with the bulk velocity. In figure 8 the plot by Zagarola et al. (1996) is reproduced,
showing that the fixed point defines the location where the normalized mean velocity
becomes independent of the Reynolds number.

The following analysis is based on the algebraic mean velocity profile defined in
equation (4.1). Recall that the algebraic scaling law is valid only for about 80% of the
pipe diameter (figure 1) and does not match the no-slip boundary condition. However,
the present analysis captures the basic features of the fixed point and gives estimates
for its location. Also, a simple explanation for a new outer scaling law introduced by
Zagarola (1996) can be provided.
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Figure 7. Semi-logarithmic plot of the axial mean velocity of high-Reynolds-number turbulent pipe
flow from Zagarola (1996) in near-wall scaling. The data cover the range from the viscous sub-layer
to the pipe axis: ◦, Rem = 3.5× 107; �, Rem = 1.4× 107; �, Rem = 4.4× 106; ×, Rem = 1.3× 106; +,
Rem = 4.1× 105; 4, Rem = 1.5× 105; •, Rem = 4.2× 104.
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Figure 8. Mean velocity normalized with the bulk velocity in high-Reynolds-number turbulent
pipe flow from Zagarola (1996) ◦, Rem = 3.5 × 107; �, Rem = 1.4 × 107; �, Rem = 4.4 × 106; ×,
Rem = 1.3× 106; +, Rem = 4.1× 105; 4, Rem = 1.5× 105; •, Rem = 4.2× 104.
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It is interesting to note that the fixed-point analysis to follow also holds for the
rotating pipe flow. It can be seen from the scaling law (4.3) that the rotation rate or the
wall velocity only appears in the coefficient of the algebraic function. Subsequently it
will be shown that to leading order the fixed point is only determined by the exponent
of the algebraic scaling law. Hence, the ensuing calculation also provides a basis for
the fixed point observed in rotating pipe flow when the rotation number is varied.
Examples for this phenomena at several different but large Reynolds numbers have
been reported by Reich (1988).

Assuming equation (4.1) to be valid for the entire pipe diameter, the mean bulk
velocity can be calculated as

ūm = ūc − 2χ

2 + ψ
uτ. (6.1)

Rewriting the latter equation, one obtains that uτ is proportional to ūc − ūm, as has
already been proposed by Zagarola (1996) as part of a modified defect scaling law for
the turbulent pipe flows. Considering (6.1) in the form uτ/(ūc− ūm) = (2 +ψ)/(2χ), the
left- and the right-hand sides may be evaluated separately from the measured data
and the theory. Employing the coefficients of equation (4.1) taken from Zagarola’s
data, a factor of (2 + ψ)/(2χ) = 0.251 is obtained. Using the values for the three
velocity scales uτ, ūc and ūm taken directly from the experiment, a slightly smaller
value of uτ/(ūc − ūm) = 0.232 is obtained.

Equation (6.1) may be combined with (4.1) to get the form

ū

ūm
=

1− χ
( r
R

)ψ uτ
ūc

1− 2χ

2 + ψ

uτ

ūc

. (6.2)

Since the fixed point is independent of the Reynolds number, the derivative of
equation (6.2) with respect to Re is taken and the resulting expression is set to zero.
In (6.2) only uτ/ūc depends on the Reynolds number. After some algebra an estimate
for the fixed point location is obtained

rfix = R

(
2

2 + ψ

)1/ψ

, (6.3)

which only depends on the exponent and not on the pre-factor of the power law (4.1).
Employing the exponent ψ = 1.77, matched to Zagarola’s data, in the fixed-point
approximation (6.3) yields rfix = 0.7R which is within 10% of the measured value of
rfix = 0.75R. Substituting (6.3) into the equation for the mean velocity (6.2), ū/ūm = 1
is obtained, as observed in experimental data.

To assess the validity of using the algebraic mean velocity over the entire pipe
diameter, the deviations for three quantities given by theory and the measured values
in Zagarola (1996) are compared. The difference between the bulk velocity from (6.1)
and Zagarola’s data is less than 3%. The factor (2 + ψ)/(2χ) is within 8% of the
experiments and the error for the fixed point is about 10%.

As mentioned above the fixed point analysis also holds for the flow in a rotating
pipe when the rotation rate is varied. Reich’s data exhibit a slightly smaller value for
the fixed point at rfix ≈ 0.7R which is closer to the calculated value in the present
analysis.
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7. Discussion and conclusions
It has been demonstrated that the approach developed in Oberlack (1997), based on

Lie group theory, can be used to derive several new scaling laws for high-Reynolds-
number turbulent flows in a non-rotating and rotating pipe. The key issue in the
present work is that the scaling laws have been derived from the Navier–Stokes
equations using Lie group methods. The analysis includes two algebraic laws for the
axial and the azimuthal mean velocity and a logarithmic law for the axial mean
velocity. All the scaling laws, which are also called self-similar or invariant solutions,
scale on the distance from the centreline rather than with the wall distance, in contrast
to the classical wall-based scaling laws.

In a non-rotating pipe, the algebraic law for the axial velocity covers about 80%
of the pipe radius. This was confirmed for three decades of Reynolds number by
using the data of Zagarola (1996). In the case of the rotating pipe flow the algebraic
law for the azimuthal velocity was confirmed for a range of Reynolds numbers and
rotation numbers for at least 70% of the radius. Based on experimental and DNS
data it was concluded that, except in the central region of the pipe, these scaling laws
were independent of Re and Ω.

For high rotation numbers, the azimuthal velocity at the wall (rather than the
friction velocity) becomes the dominant velocity scale imposed on the flow, and in
this case a new logarithmic law is found. The validity of this law was demonstrated
by using the DNS data of Orlandi & Fatica (1997) at the rotation number N = 2.
The new circular log law differs from the usual log law of the wall because it
scales with the radius and its location is closer to the pipe axis and has a wider
extent.

Based on the equations of motion in cylindrical coordinates the classical near-wall
scaling laws have not been captured. An asymptotic expansion of the Navier–Stokes
equations on the curved wall has been employed to show that near-wall scaling laws
can be obtained from flat-surface scaling laws in the limit of large Reynolds numbers.
As a result, all the near-wall scaling laws obtained in Oberlack (1997) also apply to
the present approach.

The point on the pipe radius where all mean velocities collapse when normalized
with bulk velocity is known as the fixed point, and its position is independent of
Reynolds number and rotation number. By using the algebraic law for the axial
mean velocity an estimate for the position of the fixed point is given for both the
non-rotating and the rotating pipe.

Even though the present theory gives a sound theoretical basis for turbulent scaling
laws derived from first principles some unresolved questions in rotating and non-
rotating turbulent pipe flows still remain. All scaling laws only apply in certain
regions and no link between different scaling laws has been given. Also the extent of
the scaling laws cannot be predicted. In addition, the constants in the scaling laws
had to be taken from the experimental or DNS data. All these questions will be
the subject of future research and will be addressed in an extension of the present
theory.

The author is very much indebted to Peter Bradshaw, Nail H. Ibragimov, Thomas
S. Lund, Michael M. Rogers, Seyed G. Saddoughi, and Alan A. Wray for reading
the manuscript at several stages of its development and giving valuable comments.
Special thanks to Rainer Friedrich with whom the author had inspiring discussions
about near-wall scaling laws. Furthermore he thanks Alexander J. Smits, H. Beer,
Bendiks J. Boersma and Massimiliano Fatica for the kind cooperation and providing
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work was in part supported by the Deutsche Forschungsgemeinschaft under grant
number Ob 96/2-1.

Appendix. Infinitesimal generators
The condition (3.7) results in the following set of infinitesimal generators:

ξz = a1(ν)z + f1(t, ν), ξr = a1(ν)r, ξφ = −a2(ν)tΩ + a3(ν), (A1 a–c)

ξt = a2(ν)t+ a4(ν), ξν = [2a1(ν)− a2(ν)]ν, (A1 d, e)

ηuz = [a1(ν)− a2(ν)](ūz + uz) +
df1

dt
− g1(r, ν, ūz , ūφ, p̄), (A1 f)

ηur = [a1(ν)− a2(ν)]ur, (A1 g)

ηuφ = [a1(ν)− a2(ν)](ūφ + uφ)− g2(r, ν, ūz , ūφ, p̄)− a2(ν)rΩ, (A1 h)

ηp = 2[a1(ν)− a2(ν)](p̄+ p)− z
[

d2f1

dt2
+ [a1(ν)− 2a2(ν)]K

]
−g3(r, ν, ūz , ūφ, p̄)− a2(ν)r

2Ω2 + f2(t, ν), (A1 i)

ηūz = g1(r, ν, ūz , ūφ, p̄), ηūφ = g2(r, ν, ūz , ūφ, p̄), ηp̄ = g3(r, ν, ūz , ūφ, p̄) (A1 j–l)

where all group parameters depend on ν. The additional condition for the velocity
product equations (3.8) results in the reduced set of infinitesimal generators

ξz = a1(ν)z + b1(ν)t+ b2(ν), ξr = a1(ν)r, ξφ = −a2(ν)tΩ + a3(ν), (A2 a–c)

ξt = a2(ν)t+ a4(ν), ξν = [2a1(ν)− a2(ν)]ν, (A2 d, e)

ηuz = [a1(ν)− a2(ν)]uz, ηur = [a1(ν)− a2(ν)]ur, ηuφ = [a1(ν)− a2(ν)]uφ, (A2 f–h)

ηp = 2[a1(ν)− a2(ν)]p− h1(r, ν)− z[a1(ν)− 2a4(ν)]K − a2(ν)r
2Ω2 + f3(t, ν), (A2 i)

ηūz = [a1(ν)− a2(ν)]ūz + b1(ν), ηūφ = [a1(ν)− a2(ν)]ūφ − a2(ν)rΩ,

ηp̄ = 2[a1(ν)− a2(ν)]p̄+ h1(r, ν). (A2 j–l)
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